Schrodinger Maps and Their Associated Frame Systems

نویسنده

  • ANDREA NAHMOD
چکیده

In this paper we establish the equivalence of solutions between Schrödinger maps into S2 or H2 and their associated gauge invariant Schrödinger equations. We also establish the existence of global weak solutions into H2 in two space dimensions. We extend these ideas for maps into compact hermitian symmetric manifolds with trivial first cohomology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-stability‎, ‎TF and VSDPL technique in Obrechkoff methods for the numerical solution of the Schrodinger equation

Many simulation algorithms (chemical reaction systems, differential systems arising from the modeling of transient behavior in the process industries and etc.) contain the numerical solution of systems of differential equations. For the efficient solution of the above mentioned problems, linear multistep methods or Runge-Kutta technique are used. For the simulation of chemical procedures the ra...

متن کامل

Bi-Hamiltonian operators, integrable flows of curves using moving frames, and geometric map equations

Moving frames of various kinds are used to derive bi-Hamiltonian operators and associated hierarchies of multi-component soliton equations from groupinvariant flows of non-stretching curves in constant curvature manifolds and Lie group manifolds. The hierarchy in the constant-curvature case consists of a vector mKdV equation coming from a parallel frame, a vector potential mKdV equation coming ...

متن کامل

Solutions structure of integrable families of Riccati equations and their applications to the perturbed nonlinear fractional Schrodinger equation

Some preliminaries about the integrable families of Riccati equations and solutions structure of these equations in several cases are presented in this paper, then by using of definitions for fractional derivative we apply the new extended of tanh method to the perturbed nonlinear fractional Schrodinger equation with the kerr law nonlinearity. Finally by using of this method and solutions of Ri...

متن کامل

ASSOCIATED CURVES OF THE SPACELIKE CURVE VIA THE BISHOP FRAME OF TYPE-2 IN E₁³

The objective of the study in this paper is to define M₁,M₂-direction curves and M₁,M₂-donor curves of the spacelike curve γ via the Bishop frame of type-2 in E₁³. We obtained the necessary and sufficient conditions when the associated curves to be slant helices and general helices via the Bishop frame of type-2 in E₁³. After defining the spherical indicatrices of the associated curves, we obta...

متن کامل

Group-invariant Soliton Equations and Bi-hamiltonian Geometric Curve Flows in Riemannian Symmetric Spaces

Universal bi-Hamiltonian hierarchies of group-invariant (multicomponent) soliton equations are derived from non-stretching geometric curve flows γ(t, x) in Riemannian symmetric spaces M = G/H, including compact semisimple Lie groups M = K for G = K×K, H = diag G. The derivation of these soliton hierarchies utilizes a moving parallel frame and connection 1-form along the curve flows, related to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006